Siyuan Shen

Green Hall 3101B, Washington University in St. Louis, St. Louis, MO 63130 s.siyuan@wustl.edu

EDUCATION

Washington University in St. Louis

2020 - Present

Ph.D., Energy, Environmental & Chemical Engineering

Peking University

2016 - 2020

B.S., Physics B.S., Economics

RESEARCH INTERESTS

My research is dedicated to applying deep learning methods to uncover new perspectives on air quality, satellite image-based retrievals, and climate-aerosol interactions. I am also willing to explore the interactions between air quality, anthropogenic activities, climate change, and public health.

PROFESSIONAL EXPERIENCE

Graduate Research Assistant, Washington University in St. Louis

2020 – Present

Advisor: Randall V. Martin

• Developing deep learning methods to estimate surface air pollution by integrating satellite retrievals, chemical transport model outputs, and ground observations at different spatial and temporal scales.

Visiting Undergraduate Student, University of Colorado, Boulder

2019

Advisor: Daven K. Henze

• Studied the adjoint model of the GEOS-Chem Model.

Undergraduate Research Assistant, Peking University

2018 - 2020

Advisor: Lin Zhang

- Using the adjoint model to analyze the sources and sectors of PM_{2.5} in major regions of China.
- Analyze the diurnal variation of ammonia and apply a diurnal emission scale factor in GEOS-Chem to correct the model performance.

SELECTED HONORS

Award for Academic Excellence, Peking University.

2018 - 2019

PUBLICATIONS (*SUBMITTED or IN PREPARATION)

Shen, S., van Donkelaar, A., Jacobs, N., Li, C., and Martin, R. V.: *Enhancing Estimation of Daily 1-km Resolution Fine Particulate Matter Concentrations for North America with Deep Learning from Geophysical A Priori Information.** (In preparation)

Shen, S., van Donkelaar, A., Jacobs, N., Li, C., and Martin, R. V.: *Enhancing Estimation of Fine Particulate Matter Chemical Composition Across North America by Including Geophysical A Priori Information in Deep Learning with Uncertainty Quantification.** (Under review)

Aaron van Donkelaar, Bonnie Ford, Chi Li, Amanda J. Pappin, **Siyuan Shen**, Dandan Zhang and Randall V. Martin: *North American Fine Particulate Matter Chemical Composition for 2000–2022 from Satellites, Models, and Monitors: The Changing Contribution of Wildfires*. ACS ES&T Air. DOI: 10.1021/acsestair.4c00151

Shen, S., Li, C., van Donkelaar, A., Jacobs, N., Wang, C., and Martin, R. V.: *Enhancing Global Estimation of Fine Particulate Matter Concentrations by Including Geophysical a Priori Information in Deep Learning*. ACS ES&T Air. DOI: 10.1021/acsestair.3c00054

SELECTED CONFERENCE PRESENTATIONS

2024 AGU Fall Meeting, Washington D.C., U.S.A. (Poster)

2024 11th International GEOS-Chem Meeting, St. Louis, MO, U.S.A. (Poster)

2023 AGU Fall Meeting, San Francisco, CA, U.S.A. (Talk)

2023 AERSS Annual Meeting, Wuhan, Hubei, P.R.C. (PICO)

2023 NASA HAQAST Missouri Meeting, St. Louis, MO, U.S.A. (Poster)

2022 AGU Fall Meeting, Chicago, IL, U.S.A. (Poster)

2022 10th International GEOS-Chem Meeting, St. Louis, MO, U.S.A. (Poster)

TEACHING EXPERIENCE

Washington University in St. Louis Department of Energy, Environmental, and Chemical Engineering

EECE 301: Transport Phenomena I: Basics and Fluid Mechanics

Spring 2023

EECE 314 Air Quality Engineering with Lab

Fall 2022

RESEARCH ADVISING

Undergraduate Students:

• Evan Sharafuddin, (Spring 2023 – Summer 2023, Washington University in St. Louis): "Replicate the chemical solver of the GEOS-Chem High Performance (GCHP) with Deep Learning Methods"

Graduate Students:

- Xiaoyi (Jason) Liu, (Autumn 2024 Spring 2025, Washington University in St. Louis): "Chemical and Transport Solver of the GEOS-Chem High Performance (GCHP) based on neural operators"
- Yu Yan, (Autumn 2024 Present, Washington University in St. Louis): "Developing Global NO2 by combining satellite retravels and chemical transport modeling with deep learning methods."

SYNERGISTIC ACTIVITIES

Co-leader of <u>Statistical Learning in Atmospheric Chemistry (SLAC)</u> group, seminar series (2023–Present)

OSPA Judge at AGU Fall Meeting (2023, 2024)

Peer reviewer for *The Lancet Planetary Health, Artificial Intelligence for the Earth Systems, Atmospheric Environment, Environmental Research Letters, ACS ES&T Letter, and ACS ES&T Air.*

SKILLS

- Familiar with machine learning and deep learning structures.
- Experiences in modeling global air quality with a chemical transport model, GEOS-Chem
- Programming: Python, C++
- Software: Matlab, Stata
- Language: Chinese (native); English (professional)